SN-II - Implementation Design Study of Space Weather Instruments 7th European Space Weather Week, Brugges 15. Nov. 2010 – Astrium Friedrichshafen & University of Göttingen

ASTRIUM SATELLITES Earth Observation, Navigation & Science

Content

1. Introduction

- Frame of ESA's SSA programme
- Objectives of the running two-phase ESA study

2. Strategy for the running study

- Technical requirements derived from Customer Requirements Document CRD
- Consulting/contributing groups
 - Independent Scientific Experts
 - Instrument Providers
 - Mission Project Teams

3. Outlook towards instrument implementation

- Implementation of piggy-backs on planned missions
- Definition of high level rqmts for existing gaps as dedicated mission(s)

4. Instrument selection processes

- Analysis of CRD
- Instrument selection process

5. Conclusion

→ Uni Göttingen

→ Uni Göttingen

All the space you need November 15th, 2010

1. Introduction (1/4)

- Customer requirements for space weather products have been identified in form of the CRD as part of the Space Situational Awareness (SSA) preparatory programme
- Products mainly consist of environment measurements or are derived from such data
- Measurements which can be performed from ground will be flagged
- There are very few (operational) in-space measurement sources in the field of science that could form part of an independent European Space Weather measurement network
- The SSA spacecraft-borne sensors to be developed on a < 10 year time scale are being considered
- Space weather SWE monitoring instruments will be flown on already planned ESA, European partner or non-European spacecraft.

Frame of ESA's SSA programme

Common SSA Integration Framework Cosif

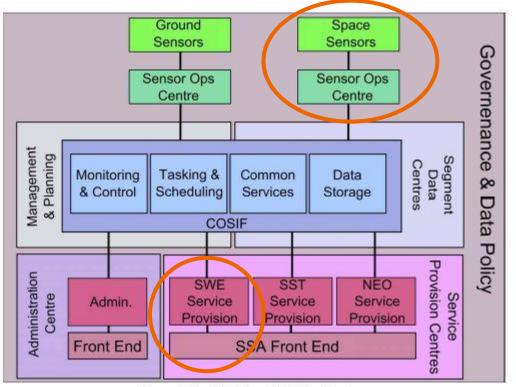


Figure 1: Simplified Overall SSA Architecture

The full Space Situational Awareness (SSA) system will enable Europe to detect, predict and assess risks from space and take actions

All the space you need November 15th, 2010

1. Introduction (3/4)

- As a result of a competitive tender ESA has recently placed a contract with Astrium GmbH to perform an activity called, 'Implementation design study of Space Weather instruments':
 - Consider the requirements of the CRD and investigate:
 - Instruments needed to satisfy these requirements
 - Required location(s) of the measurements
 - Characteristics of the instruments and of spacecraft already planned to be flown in suitable orbits
 - Degree to which the planned spacecraft can satisfy the requirements
 - Cost and Development Planning for piggy-back candidates

1. Introduction (4/4)

Objectives of the running two-phase ESA study

Phase 1: Instrument characterisation & mission analysis

- derivation of technical rgts from CRD
- investigation of instruments satisfying CRD
- reasoning of proper place in space
 investigation of potential candidate platforms
- derivation of rgts of dedicated mission(s) for gap(s)

Preliminary mission design Phase 2:

- implementation design on the basis of instrument ICDs and platform I/F rgmts
- ground segment definition & data dissemination
- mission project teams of planned and running projects will be involved via ESA for piggy-backing of instruments

2. Strategy for the running study (1/6)

Technical requirements derived from CRD

Phase 1:

CRD contains the customer rqmts for the SWE segment:

- ionosphere/thermosphere observations
- magnetosphere observations
- solar wind observations
- solar observations
- microparticle environment

LEO HEO or MEO L1 GEO or L1

- → addressing high-level user rqmts and identify services of this segment as part of the applicable baseline for all SWE segment design definition activities
- → all engineering activities and segment specifications will have to satisfy the CRD

2. Strategy for the running study (2/6)Consulting/contributing groups

Phase 1:

To cope with this wide and complex field several dedicated groups have to be consulted in order to avoid duplications or gaps:

- Independent Scientific Experts
- Instrument Providers
- Mission Project Teams

- 2. Strategy for the running study (3/6)
- **Phase 1**:

Implementation opportunities of piggy-backs on planned missions:

- starting point: mission/platform list given by ESA
- complemented by platforms available within a timeframe of < 10 years in which the spacecraft development shall be concluded
- Instrument Short-List mated with Mission Short-List results in selection of piggy-backs and mission candidates which will be investigated in Phase 2: Preliminary Implementation Design

2. Strategy for the running study (4/6)

• **Phase 1**:

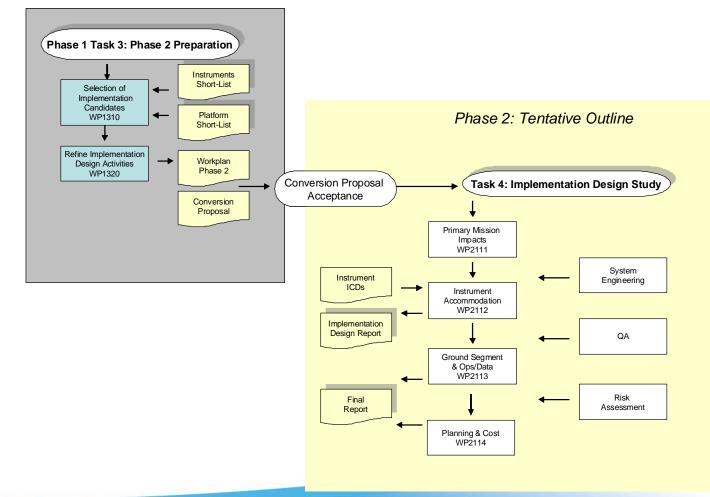
Definition of high level rqts for dedicated mission(s) for filling existing gaps

- identify launch opportunities on which small satellites can fly as secondary passenger
- most probably the gap(s) will be for instruments typically positioned in an orbit around L2 but:

Most probable gaps:

- solar wind observations
- magnetosphere observations
- solar observations

no L1 mission only few missions Imager Coronagraphs/Flux Meters: large & heavy, need high accuracy pointing → untypical for piggy-back options


2. Strategy for the running study (5/6)Mission List (detail)

	ät	smos ercial			
Mission	ESA ESA Eumetsat EC DLR CSA ISA ISA NASA	CN3A NOAA Roscosmos commercial	Expected Launch	End of Operation	Main purpose
ISS	x x x x x x x x	(X	1998	2020+	Manned space
MSG-4	ХХ		2010	2017	high stability spin axis, earth pointing, earth observation from GEO
MTG	ХХ		2017-19	2020+	high stability high pointing earth observation from GEO
EDRS	Х		2013	2020+	Telecommunications
Galileo IOV	Х		2010	2020+	Navigation
Galileo FOC	Х		2013	2020+	Navigation
Galileo-2	Х		2025	2020+	Navigation
MetOp-C	Х		2015	2020	Multi-instrument earth observation mission
Post EPS	ХХ		2018	2020+	Multi-instrument earth observation mission
Proba-3	Х		2012	2014	demonstration of foramtion flying techniques / solar coronagraphy
Proba V	Х		2012	2017	Vegetation mapping, Spot 4/5 follow-on
Hispasat		Х	2012	2020+	Telecommunications
Heinrich Hertz	Х		2015	2020+	Research on telecommunications
Alphasat I-XL		Х	2012	2020+	Telecommunications
Sentinel-1	Х		2011 / 2013	2020+	C-Band SAR mission
Sentinel-2	Х		2013	2020+	High Resolution Land Imaging Mission (VIS/NIR/SWIR)
Sentinel-3	Х		2013	2020+	Ocean Mission

2. Strategy for the running study (6/6)

7th ESWW, Brugges

All the space you need

November 15th, 2010

- 3. Outlook towards instrument implementation (1/2)
- Phase 2: Implementation Design
- Implementation design for each instrument and each mission wrt impact on S/Ss
- Involvement of platform/mission manager via ESA
- Feasibility of implementing piggy-backs wrt I/Fs

3. Outlook towards instrument implementation (2/2)

Phase 2:

Preliminary ground segment structure for SWE application

- What is needed:
 - info on orbits, receiving stations, location of control and data processing centers
 - time delays between data acquisition and delivery at processing center
 - objectives and constraints for SWE ground segment for a precursor system (up to 2019) and an operational system beyond 2019
 - network and procedure for timely distributing of data

4. Instrument selection processes

The SWE instrument selection process in Phase 1 of this project will define those SWE instruments to be studied for flight implementation in Phase 2. The selection process bases on instruments that

- provide optimal technical and science performance with respect to the SSA SWE-CRD specifications and to available or identifieed as to be required flight opportunities, including
- dedicated instruments flown on previous missions or currently in operation
- baseline instruments best suited to be modified accordingly
- instruments currently under design (e.g., those in the ESA GSTP)

4.1 Relevant References (1 of 2)

- ESA SSA Space Weather Segment Customer
 Requirements Document
- defines requirements related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere, the ionosphere, the thermosphere, and the microparticle environment, addressing the high-level user requirements.
 - CRD identifiers: SWE-CRD-BBB-XXXX
 - BBB: three letter service identifier (S/C design, S/C operation, human space flight, launch operation, transionospheric radio link, SSA space surveillance and tracking, general data service, non-space system operation)
- XXXX: identification number for each segment

All the space you need November 15th, 2010

4.1 Relevant References (2 of 2)

- Related documents:
- SSA-SWE-SOW-SNII (Statement of Work
 "Implementation design study of Space Weather Instruments")
- ESA lists of space weather assets and GSTP projects

4.1 Relevant References (1 of 2)

- ESA SSA Space Weather Segment Customer
 Requirements Document
- defines requirements related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere, the ionosphere, the thermosphere, and the microparticle environment, addressing the high-level user requirements.
 - CRD identifiers: SWE-CRD-BBB-XXXX
 - BBB: three letter service identifier (S/C design, S/C operation, human space flight, launch operation, transionospheric radio link, SSA space surveillance and tracking, general data service, non-space system operation)
- XXXX: identification number for each segment

All the space you need November 15th, 2010

4.2 Identification of SWE Instruments from CRD Analysis (1 of 3)

CRD to SWE Instrument Compliance Matrix

CRD Specification (according to SSA-SWE-SYS-CRD- 1001r4IO_SSA and update of October 4, 2010)	Requested Measurement	SWE Effects	Identified required instrument type	Compliannce with SoW baseline instrument set
SCD-1512, SCO-1549, 1554, 1569, SST-1749	>1 MeV proton energy spectrum, upper bound ~300 MeV. Highest priority to E>3 MeV. 1554: 1 MeV-400 MeV	Dose, NIEL, SEEs, solar cells	Geo-space high energy proton radiation monitor	High energy particle spectrometer, 30 sec., 5 kg, 5 W, 100 bps, directional measurements
SCD-1513, 1549, SCO-1570, SST-1749	>1 MeV ion energy spectrum. Highest prior. To E>10 MeV	Dose, NIEL, SEEs	Geo-space high energy ion radiation monitor	Missing
SCD-1514, SCO-1555, 1571, 1572	0-30 keV electron spectrum, highest priority to E>100 keV, spectra along orbit range 50 keV- 8 MeV	Dose, NIEL, charging	Geo-space electron low energy and high energy detectors/monitors	Medium to high energy particle spectrometer. 30s, 5 kg, 5 W, 100 bps
SCD-1515, SCO 1553	>30 keV and < 1 MeV ion energy spectrum	Surface degradation, component sensitivity (e.g., CCDs)	Geo-space ion low energy detectors	Missing
SCD-1516, SCO-1553, 1568	Thermal and suprathermal electron energy spectrum 0-30 keV	Charging, current collection	Geo-space electron low energy detectors	Plasma spectrometer and Langmuir density probe, 1 min., 1 kg, 1 W, EMC, <1 kbps
SCD-1517	Thermal ion density and temperature	Charging, current collection, surface erosion	tbd	NA
SCD-1518,1521, 1528, SCO- 1558, 1589, 1591, SCH- 1604, LAU-1619, 1625, 1631, TIO-1648, NSO-1769, GEN- 1696, 1697, 1698	UV and soft X-ray spectrum	Charging, current collection, surface degradation, floating potentials, TEC variations	Geo-space or L1 radiometers	UV- and X-ray flux monitors, 1 min., <1 kg, 0.1 W, pointing, <1 kbps
SCD-1519, SCO-1540, 1541, LAU-1618, GEN-1715, 1716	Atmospheric density	Drag, nowcast of drag, forecast for other planets	tbd	NA
SCD-1520	Dose	Radiation damage and skin dose	Geo-space high energy radiation monitor	High energy particle spectrometer, 30 sec., 5 kg, 5 W, 100 bps, directional measurements
SCD-1523, SCO-1567	Atomic oxygen density	Surface erosion in LEO	tbd	NA

4.3 Identification of SWE Instruments from CRD Analysis (2 of 3)

SCD-1524, 1525, SCO-1546, 1547, 1573, 1574, LAU-1620, GEN-1722, 1723	Micro particle flux	Impact effects, periods of increased intensities (e.g., meteorid streams), surface degradation	Geo-space or L1 micro particle detector	Micro-particle detector, 15 deg., 2 km/s in range 0-50 km/s, 2s, 6 kg, 10 W, <1 kbps
SCO-1531, 1532, 1546, 1548, SCO-1552, 1564, 1583, 1584, 1585, 1586, 1588, 1589, 1591, SCH- 1592, 1593, 1594, 1596, 1599, 1600, 1601, 1607, 1610, 1611, LAU-1619, 1631, TIO-1659, NSO-1760	Real-time SWE monitoring (magnetic storms, SEPS, CMEs, flares, coronal holes, meteor streams), incl. far-side of sun and forecast and probability estimates of SWE events (magnetic storms, SEPs, CMEs, flares, meteor streams, dose, charging)	Effects on S/C, prediction, TEC forecast, all SWE conditions, long-term, short-term	L1 or geo-space solar X-ray, EUV, VIS imager, magnetograph, micro-particle detector, particle detectors. L1 solar wind plasma instrument and magnetometer, particle detectors.	X/EUV imagers, 90°, 5 min., 10 kg, 10 W, high accuracy pointing, <1 kbps
SCO-1549, 1555, 1558, 1560, 1584, 1588, SCH- 1592, SCH-1599, 1600, 1603, NSO-1751, 1752, 1753, GEN-1713, 1714	S/C radiation monitoring in magnetosphere and heliosphere, E 1-400 MeV p in rad. belt	Radiation effects, cosmic ray fluxes and spectra	L1, L5 and geo-space medium to high energy radiation monitors.	High energy particle spectrometer 30 sec., 5 kg, 5 W, 100 bps, directional measurements
SCO-1566, 1584, SCH-1599, 1600, 1601, SCH-1604, LAU- 1619, 1623, 1625, 1629, 1631, 1632, NSO-generally, NSO-1751, 1762, 1763, 1764, 2600, GEN-1700, 1701, 1702, 17031704, 1705, 1706	Solar wind monitoring and particle monitoring at 1 AU (1 MeV to >100 MeV p and ions, 2- 50 MeV electrons)	Magnetospheric disturbance level, forecast, storm detection, TEC forecast, GICs	L1 solar wind plasma instrument, magnetometer, high energy particle detectors for p, ions and electrons.	Solar wind plasma monitor (0 eV- keV, 2 x 10 channels with 10%), 3D Magnetometer (1e-3 nT, 1 min., 1 kg, 1 W, EMC, <1 kbps), high energy proton, ion and electron particle detectors or compact radiation monitor
SCO-1561, 1563, TIO-1633, 1634, 1635, 1636, 1637, 1639, 2466, 1640, 1641, SST-1657, 1658, NSO-1753, 1754, 1755, 1770, 1771	Altitude dependent TEC, scintillations, TIDs, irregularities, blobs	Navigation and communication impacts	Geo-space GNSS receivers	GNSS dual freq. receiver in radio- occ. Mode, 1 TECU, >100 e- density profiles/day, 10 kg, 10 W, pointing, <1 kbps
SCH-1592, 1598, 1607, LAU- 1614, 1628, 1631, 1648	SEP forecast for increased fluxes of 30-200 MeV particles	Radiation hazards to astronauts	L1, L5, geo-space solar monitoring devices, solar wind instrument, magnetometer and high energy radiation monitors.	Missing

4.3 Identification of SWE Instruments from CRD Analysis (3 of 3)

SCH-1601, 1610, 1611, LAU- 1615, 1616, 1619, LAU-1624,	Solar disc imaging (X or EUV or VIS) and magnetograms, far-side	Solar activity forecast (solar wind, CMEs,	L5, L1 and geo-space imagers complemented by ground-	See imagers. Magnetograph, VIS imager missing
1629, 1631, TIO-1643, 1644, 1645, 1648, SST-1659, NSO-	imaging/maps, H-alpha, radio- telescopes	flares, particles)	based networks.	
1760, 1765, GEN-1687, 1686, 1699				
SCH-1602, TIO-1659, NSO- 1766, GEN-1689, 1690, 1691, 1695	Wide-angle corona	CMEs, corona and solar wind conditions	L5, L1 or geo-space coronagraph.	Wide angle coronagraph, 10", 30 min., 10 kg, 20 W, high accuracy pointing, straylight removal, <1 kbps
TIO-1646, GEN-1711, 1712	Environment monitoring of local magnetospheric magnetic and electric fields		Geo-space electric field devices and magnetometers.	Plasma spectrometer and Langmuir density probe, 1 min., 1 kg, 1 W, EMC, <1 kbps. Magnetometer as specified.
NSO-1772, GEN-1707, 1708, 1709, 1710,	Auroral imaging from space too ?	Polar conditions	Tbd if desired from space.	Missing
GEN-1692	Stereo images of CMEs, CIRs		L5, L1, L4, geo-space coronagraph observations.	Imagers as specified
GEN-1693	Far-side maps		Geo-space or L1 magnetograph.	Missing
GEN-1694	Ly-alpha monitor		Geo-space or L1 monitor	Missing

Generally requested needs for instruments and other CRD specs:

- 1) SEG-1504 (needed information on origin of data)
- 2) SEG-1506 (accuracy specs)
- 3) SEG-1638, 1597, 1506, LAU-1621, 1622, 1626 (information provision to users, availability of data)
- 4) SEG-1677 (event based alarm mode, NA to all types of instruments)

5) SCD-1507, 1508, 1509, 1510, SCO-1557, 1588, LAU-1617 (statistical environment characterization for ionizing rad., plasma, microparticles, UV, dose, SEE, charging, anomalies, micro-particle impacts, post-analysis tools and information, NA to all types of instruments)

6) SCD-1511 (long-term solar cycle predictions (NA to a number of instruments and observations)

etc.

All the space you need November 15th, 2010

4.4 Identification process

- Long-list of international available SWE instrument resources established
- SWE Science advisory team (SAT) formed (9 members from Europe)
- SWE Instrument Expert Team (IET) formed (8 members from Europe)

4.4 Identification process

- Review process of SWE instrument resources by UGOE, Astrium, ESA, SAT, IET
- Review yielded a reduced long-list of potential SWE instrument providers (PIP list comprises ~ 60 institutions)
- Announcement of dedicated project workshop at ESA/ESTEC and request for statements of interest sent out on October 29

4.5 Selection process of SSA SWE SN-II Phase 2 instruments (1 of 2)

- November 4: Requested timeline for SOIs
- November 10: Requested timeline for instrument questionnaire response
 - Instrument proposal feedback was very successful
- Review of SWE project instrument proposals by UGOE, Astrium, ESA, IET members until November 21

4.5 Selection process of SSA SWE SN-II Phase 2 instruments (2 of 2)

- Successful proposals will participate in the SWE instrumentation workshop at ESA/ESTEC on November 30, December 1
- Final review process of SWE instrument presentations w.r.t.
 - CRD analysis results
 - Instrument/mission technical requirement to CRD analysis results
- Announcement of selected Phase 2 SWE instruments by about
 December 17

